Search results for "enhancer blocking"
showing 3 items of 3 documents
Enhancer blocking activity located near the 3′ end of the sea urchin early H2A histone gene
1997
The sea urchin early histone repeating unit contains one copy of each of the five histone genes whose coordinate expression during development is regulated by gene-specific elements. To learn how within the histone repeating unit a gene-specific activator can be prevented to communicate with the heterologous promoters, we searched for domain boundaries by using the enhancer blocking assay. We focused on the region near the 3′ end of the H2A gene where stage-specific nuclease cleavage sites appear upon silencing of the early histone genes. We demonstrated that a DNA fragment of 265 bp in length, defined as sns (for silencing nucleoprotein structure), blocked the enhancer activity of the H2A…
Functional characterization of the sea urchin sns chromatin insulator in erythroid cells.
2005
Abstract Chromatin insulators are regulatory elements that determine domains of genetic functions. We have previously described the characterization of a 265 bp insulator element, termed sns, localized at the 3′ end of the early histone H2A gene of the sea urchin Paracentrotus lividus. This sequence contains three cis-acting elements (Box A, Box B, and Box C + T) all needed for the enhancer-blocking activity in both sea urchin and human cells. The goal of this study was to further characterize the sea urchin sns insulator in the erythroid environment. We employed colony assays in human (K562) and mouse (MEL) erythroid cell lines. We tested the capability of sns to interfere with the communi…
Functional characterization of the enhancer blocking element of the sea urchin early histone gene cluster reveals insulator properties and three esse…
2000
Insulator elements can be functionally identified by their ability to shield promoters from regulators in a position-dependent manner or their ability to protect adjacent transgenes from position effects. We have previously reported the identification of a 265 bp sns DNA fragment at the 3' end of the sea urchin H2A early histone gene that blocked expression of a reporter gene in transgenic embryos when placed between the enhancer and the promoter. Here we show that sns interferes with enhancer-promoter interaction in a directional manner. When sns is placed between the H2A modulator and the inducible tet operator, the modulator is barred from interaction with the basal promoter. However, th…